Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2 : role of carotid body CO2.

نویسندگان

  • Curtis A Smith
  • Grégory M Blain
  • Kathleen S Henderson
  • Jerome A Dempsey
چکیده

We asked if the type of carotid body (CB) chemoreceptor stimulus influenced the ventilatory gain of the central chemoreceptors to CO2 . The effect of CB normoxic hypocapnia, normocapnia and hypercapnia (carotid body PCO2 ≈ 22, 41 and 68 mmHg, respectively) on the ventilatory CO2 sensitivity of central chemoreceptors was studied in seven awake dogs with vascularly-isolated and extracorporeally-perfused CBs. Chemosensitivity with one CB was similar to that in intact dogs. In four CB-denervated dogs, absence of hyper-/hypoventilatory responses to CB perfusion with PCO2 of 19-75 mmHg confirmed separation of the perfused CB circulation from the brain. The group mean central CO2 response slopes were increased 303% for minute ventilation (V̇I)(P ≤ 0.01) and 251% for mean inspiratory flow rate (VT /TI ) (P ≤ 0.05) when the CB was hypercapnic vs. hypocapnic; central CO2 response slopes for tidal volume (VT ), breathing frequency (fb ) and rate of rise of the diaphragm EMG increased in 6 of 7 animals but the group mean changes did not reach statistical significance. Group mean central CO2 response slopes were also increased 237% for V̇I(P ≤ 0.01) and 249% for VT /TI (P ≤ 0.05) when the CB was normocapnic vs. hypocapnic, but no significant differences in any of the central ventilatory response indices were found between CB normocapnia and hypercapnia. These hyperadditive effects of CB hyper-/hypocapnia agree with previous findings using CB hyper-/hypoxia.We propose that hyperaddition is the dominant form of chemoreceptor interaction in quiet wakefulness when the chemosensory control system is intact, response gains physiological, and carotid body chemoreceptors are driven by a wide range of O2 and/or CO2 .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors.

We assessed the speed of the ventilatory response to square-wave changes in alveolar P(CO2) and the relative gains of the steady-state ventilatory response to CO2 of the central chemoreceptors vs. the carotid body chemoreceptors in intact, unanesthetized dogs. We used extracorporeal perfusion of the reversibly isolated carotid sinus to maintain normal tonic activity of the carotid body chemorec...

متن کامل

Plasticity of Central Chemoreceptors: Effect of Bilateral Carotid Body Resection on Central CO2 Sensitivity

BACKGROUND Human breathing is regulated by feedback and feed-forward control mechanisms, allowing a strict matching between metabolic needs and the uptake of oxygen in the lungs. The most important control mechanism, the metabolic ventilatory control system, is fine-tuned by two sets of chemoreceptors, the peripheral chemoreceptors in the carotid bodies (located in the bifurcation of the common...

متن کامل

HIGHLIGHTED TOPIC Central CO2 Chemoreception in Cardiorespiratory Control Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H

Forster HV, Smith CA. Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H . J Appl Physiol 108: 989–994, 2010. First published January 14, 2010; doi:10.1152/japplphysiol.01059.2009.—The major objective of this review is to evaluate existing information and reach conclusions regarding whether there is interaction between PCO2/H stimulation of carotid (peri...

متن کامل

Non-Invasive Mechanical Ventilation in Children: An Overview

Ventilatory control is a precisely tuned physiologic process that maintains systemic oxygen and carbon dioxide levels within very narrow ranges required for appropriate cellular function. This delicate balance has resulted in a complex system that senses changes in oxygen (O2), carbon dioxide (CO2), and pH in arterial blood and in the brain and responds to these changes through compensatory res...

متن کامل

Central CO2 chemoreception in cardiorespiratory control.

HYPERCAPNIA, largely through the direct influence of CO2 on proton production, but possibly also via a direct effect of molecular CO2, is the primary chemical stimulus for alveolar ventilation. Small deviations in arterial CO2 in either direction elicit integrated cardiorespiratory reflexes that quickly restore CO2 levels in various tissue and cellular compartments, thereby providing the body w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of physiology

دوره 588 Pt 13  شماره 

صفحات  -

تاریخ انتشار 2010